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Abstract – A one-dimensional inverse heat conduction problem (IHCP) of estimating an unknown heat flux, 
given experimental temperature measurements at a point in the domain, is solved using evolutionary algorithms 
(EA). The EA based methods used to solve the one-dimensional IHCP in the literature involve minimization of 
the Tikhonov functional. In this paper, a modified approach is utilized wherein the first term of the Tikhonov 
functional is assigned a weight depending on the time step. More weight is assigned initially, and this weight is 
reduced gradually so that the EA pays more attention to the initial heat flux values. This is required because it 
would be extremely difficult to estimate the later unknown heat flux values correctly without estimating the 
initial unknown heat flux values correctly. This enables the EA to move quickly to find the minimized values. 
This approach performs better in terms of the number of mating events to solution when compared with that 
without using any weights, in the case of the one-dimensional IHCP examined.  
 
NOMENCLATURE 
!  Thermal diffusivity 
!  Regularization parameter 
T Temperature 
t Time 
x Spatial variable along x direction 
q Heat flux 
t!  Time step 
x!  Distance along grid points in x direction 
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g Spatial variation of initial temperature in the domain 
f Fitness function for minimization problem 
f’ Fitness function for maximization problem 
N Number of grid points in the domain 
( )w t  Weight function 

 
Subscripts and Superscripts 
i Spatial grid index 
j Time index 
meas Values that have been measured 
cand Values from a candidate solution 
 
 
1. INTRODUCTION 
The inverse heat conduction problem (IHCP) has been widely studied in the literature [1-3]. Several analytical 
approaches have been used to solve the IHCP. Also, optimization techniques like the conjugate gradient method 
have been used. In addition to the analytical and gradient based optimization based techniques, artificial 
intelligence techniques like genetic algorithms and neural networks have also been used within an optimization 
framework as solution techniques for the IHCP. Mera et al. [9] have studied the use of genetic algorithms in the 
solution of ill-posed problems and have pointed out that additional constraints have to be incorporated to 
stabilize the solution and that an EA does not have a self-regularizing property. Raudensky et al. [5] used a 
genetic algorithm to solve the non-linear IHCP. In this paper, an evolutionary technique is discussed in which 
weights are assigned to the fitness function. It has been found that assigning weights has increased the average 
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fitness of the population during the evolutionary process. A linear, one-dimensional heat conduction problem has 
been solved with a single temperature sensor at x=1, the right end of the domain.  
 
2. PROBLEM DESCRIPTION 
The problem being studied in this paper is a linear one-dimensional conduction problem. The properties are 
assumed to be constant with temperature and distance. The governing equation for this problem is given by 
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The geometry of the problem is a plate of constant thermal diffusivity as shown in Figure 1. At the left end of the 
plate a heat flux is applied which varies with time, and the right end is kept insulated. 
 
 
 

 
 
 
 
 

 
Figure 1. Geometry for the one dimensional direct problem. 

 
Thus the boundary and initial conditions are given by eqns. (2) and (3), respectively.  
 

(0, )

(1, )

| ( )

| 0

t

t

T
q t

t

T

t

!
=

!

!
=

!

 

 
(2) 

 
( ,0) ( )T x g x=  (3) 

 
The Crank Nicholson finite difference scheme was used to solve the problem numerically. Using this scheme the 
finite difference form of eqn. (1) can be obtained as 
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Rearranging the above equation so that all the unknowns are on the left hand side of the equation gives 
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In eqn. (5) ! is 
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 and i varies from 0 to N, where N is the number of grid points in the domain[ ]0,1 . 

Equation (5) is solved along with the discritized boundary conditions for the temperature field at time step n+1 
using the temperature field at time step n, and using the tri-diagonal matrix algorithm. Benchmark test cases as 
given in [1] were run to validate the direct problem solution.  
 
Case 1. A constant heat flux is applied at x=0 and x=1 is insulated. The initial temperature of the plate is taken 
as ( ,0) 0.0T x = . The temperature response at various locations in the plate is shown in Figure 2 and is found to 
be in accordance with those shown in [1].  

q(t) x x=0 x=1 

Sensor location 
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Figure 2. Temperature response at various locations in the plate due to a constant heat flux. 

 
Case 2.  A triangular heat flux that varies according to eqn. (6) is applied at x=0, and x=1 is insulated. Initial 
temperature is ( ,0) 0.0T x = . The temperature response for this case is shown in Figure 3.  
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Figure 3. Temperature response at various locations in the plate due to triangular heat flux. 

 
These results from the direct solution of the problem validate the code employed to solve the problem 
numerically.  
 
3. INVERSE PROBLEM 
The inverse problem of estimating the input heat flux when temperature measurements inside the body are 
known is investigated in this paper. When the sensor location is farthest from the heat source/unknown 
boundary, it presents a challenge to the inverse algorithm. This is due to damping and lagging effects as 
explained in [1].  In the inverse problem considered in this paper, the heat flux q(t) is unknown, To make up for 
the lack of this information, temperature measurements from a sensor placed at x=1 are known. Thus meas

jT for 
all 1 to j N=  are known at x=1. The boundary condition at x=1 (insulated) and the initial condition remain the 
same for the inverse problem. Thus the goal of the inverse algorithm is to find the input heat flux, q(t), for which 
the evaluated temperature at x=1 equals the measured temperature. For this purpose, an optimization based 
approach using an EA is used in this paper.  
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4. EVOLUTIONARY ALGORITHMS 
Evolutionary algorithms (EAs) are search and optimization methods based on the concept of the survival of the 
fittest. The main operators in an EA are the selection, crossover and mutation operators. A population of 
candidate solutions is generated at random, which are stored in an appropriate data structure. An array of double 
precision numbers is used in this EA. Selection is based on the fitness of the candidate solutions, i.e. those with 
higher fitness values have a higher probability of selection. The chromosome is an array of double precision 
numbers of length equal to the number of time steps being considered. The primary advantages of EAs in this 
application are the ability to identify multiple good solutions which directly supports the engineering decision 
making process and the ability to avoid trapping these proposed solutions at local optima. 
Fitness function  
The fitness evaluation function is given by eqn. (7), which is the Tikhonov functional 
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This fitness function has to be minimized, so it is converted into a maximization function by transforming it into 
the following form, as shown in [5].  
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Thus, the minimization problem has been converted into a maximization problem using the transformation in 
eqn. (8). A population of 32 candidate solutions is used in the EA to solve this inverse problem. The population 
is initialized randomly. Since the initial population is random, the chromosome initially holds random values that 
look very different from the required heat flux profile. In transient conduction, the initial heat flux values have to 
be found correctly before the later flux values are found. For instance, having the correct values for heat flux in 
the last 10 time steps and incorrect values in the first 10 still gives the chromosome a very low fitness value. This 
means that the values in the later part of the chromosome do not have their own fitness values but depend on the 
values of the first part of the chromosome. This is called epistasis. During the evolutionary process, giving more 
importance to the locations in the chromosome that can be found independently is necessary to solve the 
problem of epistasis. For this purpose a weight function is multiplied to the first term in eqn. (7). For the inverse 
problem involving heat conduction, the weight function given by eqn. (9) has been used. 

 
Figure 4. Variation of weights with time step for different values of c.  

 
In eqn. (9), c is a constant that can be set depending on the problem being solved. This weight function is 
multiplied to the first term in eqn. (7) to obtain a new fitness function. Figure 4 shows how the weights vary  
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as a function of t i.e. time steps. It can be seen that increasing the value of c relaxes the importance of earlier 
errors as the time increases. Initially this kind of weight function drives the EA to give more attention to the 
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initial heat fluxes because without estimating these correctly, it would be difficult for the EA to estimate the later 
fluxes correctly because of epistasis.  
Crossover operator 
Uniform two point crossover has been used to exchange genetic material between the candidate solutions. Two 
locations are selected at random on the two parents selected for crossover and are swapped at the selected 
locations.  
Mutation operator 
The mutation operator is necessary to add new genetic material into the population. The probability of mutation 
in this EA is increased linearly with the number of mating events. The mutation process constitutes selecting a 
location on the string at random and modifying the value at that location. This is done by taking a weighted 
average of the heat flux values of the past and future three times at the selected location. So, if the selected 
location is l, then the new value at l, 

l
T , is given by   

 
3 2 1 1 2 3{ 2 3 6 7 6 3 2 }/ 21

l l l l l l l l
T T T T T T T T! ! ! + + += ! + + + + + !  

 
(10) 

 
At the locations where l-3, l-2, l-1, l+1, l+2 and l+3 are not defined, the values are taken to be zero. This kind of 
mutation operator helps in making the discrete values in the string more continuous. To help the EA escape from 
local optima, after every 500 mating events a randomly selected value in the chromosome is mutated with a 
random value.  
 
5. RESULTS 
Two test cases were run to check the performance of the EA in estimating correctly the input heat flux q(t). The 
direct problem was solved for the two cases, and the temperature response at x=1 from the solutions was used as 
experimental data for the inverse problem.  
Linearly varying heat flux 
Data for the inverse problem was collected by solving the governing equations by applying a linearly varying 
heat flux at x=0, given by 
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Figure 5. Solutions obtained form the EA for linearly varying flux.  

 
Triangular variation of heat flux 
A triangular heat flux variation, given by eqn. (12), is used to generate data for the inverse problem. This is one 
of the most stringent test cases in an IHCP. The goal of the EA is to match as closely as possible this input 
profile, using the data from the direct problem solution.  
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Figure 6. Solutions obtained form the EA for the triangular variation of flux.  

 
It can be seen from Figures (5) and (6) that the EA matches the input heat flux well. These solutions have been 
obtained for the case where the weights w, have been used in conjunction with eqn. (7). Figures (7) and (8) show 
the best solutions obtained at various stages of the evolutionary process.  

 
Figure 7. Best candidate solutions at various stages in the EA, linearly varying heat flux after (+) 1, (*) 15 and   

(-.-) 40 thousand mating events respectively.  
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Figure 8. Best candidate solutions at various stages in the EA, using triangular variation of heat flux after (+) 1, 

(*) 15 and (-.-) 40 thousand mating events respectively. 
 
It was found that using the exact number of time steps resulted in the solution being inaccurate at later time 
steps, and hence more time steps than needed were used in the solution procedure. This occurs because of the lag 
in temperature response at the sensor at the farthest end of the domain. Physically, it takes more time for the 
information at the left end to be transmitted to the right end of the plate. Hence, for estimating heat flux at the 
right end of the plate, more time steps than necessary have to be considered for correctly estimating the heat 
flux. This resulted in accurate solutions for the required number of time steps.  
Comparison of fitness 
The scaled fitness values for the two situations, i.e. (a) weights not used in fitness evaluation and (b) weights 
used in fitness evaluation, are compared in Figures (9) and (10). These fitness values were recorded from the 
1000th mating event onwards.  It can be seen that using weights in the fitness evaluations has a distinct advantage 
to find better fitness candidate solutions in the initial stages of the evolutionary process. The number of mating 
events to solution is fewer in the case when weights are used.  

 
Figure 9. Comparison of weighted and unweighted fitness values for the linear heat flux case.  
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Figure 10. Comparison of weighted and unweighted fitness values for the triangular heat flux case. 

 
Values of c used for the linear and triangular heat flux cases are 10 and 100 respectively. It is evident from 
Figures 9 and 10 that the increase in fitness is much more in the triangular heat flux case. Thus, multiplying the 
first term of the Tikhonov functional by a weight function allows the EA to search the solution space for a 
solution at the initial time steps in a better manner before moving onto the later time steps. Figure 11 shows the 
variation of average fitness of the population and maximum fitness averaged over 30 runs of the EA. This figure 
shows that the population is evolving to the maximum fitness value. This data is taken for the linear heat flux 
case and plotted for the first 1500 mating events.  

 
Figure 11. Comparison of average and maximum fitness values. 

 
6. CONCLUSIONS AND FUTURE WORK 
In this paper, a one-dimensional IHCP was solved by minimizing a modified form of Tikhonov’s functional 
using an EA. The solutions obtained from the EA are accurate. It was found that this method resulted in better 
performance of the EA by looking at the variation of fitness with the number of mating events. These 
preliminary results show promise for use in more complicated problems. The EA will be extended for non-linear 
heat conduction problems as well in which the thermal properties vary with temperature. Performance of the 
algorithm in the presence of noise in the measured temperature data also has to be evaluated.  
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